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OBJECTIVES
The primary objectives of this research were to develop reduced-order modeling method-
ologies for control and optimization applications. This was achieved through three specific
research goals. First of all, we focused on improving the accuracy of reduced-order model
simulations by including closure terms (that can be implemented in practical applications).
Secondly, we used sensitivity analysis to improve the accuracy of models over ranges of
parameters. Finally, we developed a better methodology for using reduced-order modeling
methods for feedback control calculations. We made significant advances in each of these
three areas.

ACCOMPLISHMENTS

Overview

Our research program focused on reduced-order models for large-scale systems with
an emphasis on fluids and application to control and optimization problems. In this sum-
mary, we will focus on three results that correspond to the three main tasks outlined in our
original proposal. In the first section, we provide an overview of our progress introduc-
ing closure models for POD / Galerkin dynamical systems based on the advances in the
turbulence modeling community. Results are presented for Smagorinsky closure models
in two-dimensional and three-dimensional flows about circular cylinders. This includes
those corresponding to a multi-level discretization approach to make this closure approach
feasible. In the second section, we highlight the use of sensitivity analysis to improve the
accuracy of reduced-order models over ranges in parameters. Each of these two approaches
(closure and sensitivity) provide significant improvements to reduced-order models mak-
ing them more attractive as surrogates in optimal design problems. In the third section,
we present a novel approach to solving flow control problems by developing reduced-order
models specifically for Lyapunov and Chandrasekhar equations (rather than designing con-
trollers for reduced-order models).



Closure for POD Models

Accurate modeling of complex flows using the proper orthogonal decomposition (POD)
requires closure terms that account for the discarded (truncated) basis functions. Prior to
this research, closure models were either based on tuning model coefficients to match data
or based on simplified turbulence models. The latter is due to the desire to build models
that can be evaluated rapidly. However, as our preliminary studies have shown, introduc-
ing models based on modern turbulent flow practices leads to more accurate reduced-order
models at a significantly higher computational cost. A survey of our closure modeling
approaches appear in papers #7, 10, 11, 18, 24, 39, and 47. An enabling method for im-
plementing our closure models is two-level (or multi-level) discretization of the nonlinear
closure terms. The general approach is to use coarser meshes to discretize the nonlinear
closure terms involving the lower order POD modes. We highlight the main results from
this study using a two-dimensional flow past a cylinder at Reynolds number Re = 200 and
a three-dimensional flow past a cylinder at Reynolds number Re = 1000 (details can be
found in paper # 47).

We approximate the flow velocity v using a centering trajectory v̄ and a linear combi-
nation of POD modes span{φj}rj=1,

v(x, t) ≈ vr(x, t) ≡ v̄(x) +
r∑
j=1

φj(x)aj(t).

Substitution of this form into the weak form of the Navier-Stokes equations leads to a
low-order dynamical system of the form

ȧ = b+ Aa+ aTBa, aj(0) = 〈φj,v(·, 0)− v̄(·)〉.

However, when comparing coefficients aj with projected quantities ãj ≡ 〈φj,v(·, t)−v̄(·)〉,
it is obvious that one needs to model the influence of the discarded POD modes {φr+1, . . .}
in the dynamical system. This is more obvious as the Reynolds number increases. In the
study below, we use a standard Smagorinsky model to account for the dissipative effect of
the smaller scale structures in the flow. We are currently preparing a study that compares a
variety of closure models using the multi-level discretization approach.

In Figure 1, we present the coefficients ã1 and ã3 as well as the corresponding coeffi-
cients using the standard POD / Galerkin approach for the two-dimensional cylinder flow
problem (labeled aPOD). Note there is a poor agreement between these two models (inte-
grated over 1000 shedding cycles).

We use the Smagorinsky closure model account for the discarded modes and present
the evolution of the first and third coefficients in Figure 2. These coefficients have much
better agreement with ã, however, introduce a substantial computational cost. This cost
can be minimized by employing a multi-level discretization approach (using a 4x coarser
mesh for the nonlinear Smagorinsky terms). As seen in Figure 2, there is little difference
in the solutions using this modified closure term, but the computational cost is reduced by
a factor of nearly 20.

This study was repeated for a more challenging flow field corresponding to three dimen-
sional flow past a cylinder at Re = 1000 (the computational mesh is indicated in Figure 3).



Figure 1: Comparison of ã (top) and aPOD (bottom) coefficients

Figure 2: Coefficients of reduced-order model with Smagorinsky closure terms: original
mesh (top), coarse mesh (bottom)



Figure 3: Computational grid for three-dimensional flow past a cylinder

A reduced-order model for r = 6 was computed and found similar improvements with the
addition of a Smagorinsky closure model. A table indicating the computational speedup
of the two-level methods over the one-level method as well as the relative error in the flow
field over one shedding cycle is given below.

coarsening level speedup factor error
1 1 4.46× 10−2

2 5.22 4.52× 10−2

4 24.18 4.73× 10−2

Sensitivity Analysis of POD Modes

This research led to an extensive study on the benefits of using sensitivity analysis to
improve the quality of reduced order models from a single simulation. The results of this
research is contained in references #5, 9, 25, 30, 31, 32, 33, 34, 35, and 42. We consider
a POD model for a flow with a geometric parameter change. The flow again consists
of two dimensional flow past a square cylinder, but the angle of the square to the fixed
incoming flow and channel walls is parameter dependent. First of all, we introduce a mesh
warping function to transform the domain at γ = 22.5◦, α = 0◦ to a range of parameters
α (see Figure 4). This mesh warping function is shown for α = −22.5◦, 0◦, and 22.5◦,
respectively in Figure 5.

This mesh warping function allows us to map POD bases to different geometric con-
figurations as well as define Lagrangian flow sensitivity analysis, to describe how the flow
changes with changes to the geometry. This sensitivity analysis can be used to extrapolate
the nominal POD basis computed at α = 0◦ to a range of parameters. We also consider
building reduced-order models that incorporate both the original POD basis as well as the
geometric sensitivity of the basis to α (an example of a POD basis function and the sensi-
tivity of the POD basis function with respect to a parameter are provided in Figure 7).

We compute the relative error (vs. direct numerical simulation) in reduced order models
of order 12 over one shedding period and plot the results in Figure 6. We note that the
extrapolated basis provides a significant improvement in the reduced order models (nearly
an order of magnitude in relative error) at small parameter changes where the extrapolation



Figure 4: Flow past a cylinder at varying angle of attack, α

Figure 5: Demonstration of mesh warping function

is expected to be valid. The error in the reduced-order model with the extrapolated basis is
comparable to that obtained by projecting the CFD solution onto the basis.

Figure 6: Relative errors in reduced-order models

We note that the example with significant geometric deformation is challenging for
most reduced-order modeling capabilities. Combining sensitivity analysis (for varying vis-
cosity and boundary conditions) with POD had more dramatic improvement over larger
parametric variation.



(a.) POD modes

(b.) Sensitivity of POD modes with respect to α.

Figure 7: POD modes and their geometric sensitivity to α



A Reduced Order Solver for Lyapunov Equations with High Rank Matrices

Consider the Lyapunov equation

ATP + PA + Q = 0 (1)

where A and Q are sparse1, high rank matrices and A is asymptotically stable. We further
consider the special case where Q is symmetric, leading to symmetric solutions P. Further-
more, we are only interested in the action of P on one column vector b (or a few column
vectors in B), in other words, we seek Pb (or PB). Among many control applications,
one natural application arises from Kleinman-Newton iterations to solve large scale Riccati
equations.
It is well known that the solution P to (1) can be written as

P =
∫ ∞

0
eA

T tQeAt dt.

Thus, the action of P on a vector b can be approximated as the solution to a two point
boundary value problem. To see this, we introduce the weakly coupled state/adjoint system

ẋ = Ax, x(0) = b (2)
−λ̇τ = ATλτ + Qx, λ(τ) = 0. (3)

Since limτ→∞ x(τ) = 0, our approximation is seen in the limiting solution

λ∞(·) = lim
τ→∞

λτ (·).

Since λ∞(t) = Px(t), we arrive at our desired product as λ∞(0) = Px(0) = Pb.
A straightforward approach for approximating Pb would be to numerically integrate (2)
until the solution is essentially zero (guaranteed by the asymptotic stability assumption on
A). With the state solution x available, the adjoint equation can be integrated backward
in time. Since storage would likely be an issue, a checkpointing strategy, eg. [Griewank
2000], could be employed if needed to carry out this approach. However, the cost of inte-
grating equations (2)-(3), even exploiting the fact that only products Ax, ATλ and Qx are
needed, severely limit the applicability of this approach.
The central strategy proposed in this research is to split the integration above into two
pieces. The solution over the interval [0, T ] is integrated accurately until model reduction
can be performed to accurately approximate the solution over [T,∞). Then the system over
[T,∞) reduces to a low order Sylvester equation from which we can obtain an approximate
final condition for λ(T ). With the final condition we can integrate the system back to
t = 0. Our reduced order solver is outlined below. Note that for simplicity, we consider
approximating the product Pb for a column vector b. Motivation and parameter selection
for the algorithm can be found in papers #8 and 26.

1Alternately, our methodology applied to the case where A and Q can be decomposed into basic opera-
tions involving sparse matrices such that the products Ax, ATλ and Qx can be computed cheaply



Algorithm 1 (Reduced Order Lyapunov Solver) Given stable A ∈ IRn×n, b ∈ IRn×1,
Q ∈ IRn×n (Q = QT ) as well as parameters T and r � n.

1. Integrate the state equation (2) from x(0) = b over the interval [0, T ].

2. Use the proper orthogonal decomposition, or another reduced order basis method,
to generate a low r-dimensional basis for x(t) on the time interval [T,∞). This basis
is arranged in columns of the matrix V ∈ IRn×r.

3. Solve the Sylvester equation

ATP + PVTAV + QV = 0.

Note that this can be done by performing Schur decomposition to the low order ma-
trix VTAV and then solving r linear systems of order n (Bartels and Stewart).

4. Integrate the adjoint equation (3) from λ(T ) = PVTx(T ) over [0, T ].

The result is λ(0) ≈ Pb.

This algorithm was tested on a two-dimensional advection diffusion reaction equation re-
sulting from a linearized 2D Burgers equation [Camphouse 2004]. In the table below, we
present relative errors of the solution for varying values of integration time T and reduced-
order model size r.

Mesh size N = 1413.
r 5 10 20

T = 2 1.5882e-05 2.0714e-09 4.6295e-13
T = 4 1.2096e-08 4.6095e-13 4.6333e-13
T = 6 6.5992e-12 4.6319e-13 4.6317e-13

An Efficient Long-Time Integrator for Chandrasekhar Equations
The Chandrasekhar equations have been posed as a methodology for solving the infinite
horizon control problem when the system involves a distributed parameter system. In this
case, the Chandrasekhar equations have the form

−K̇(t)=R−1BTL(t)LT (t), K(0) = 0 ∈ IRm×n (4)
−L̇(t)=(A−BK(t))T L(t), L(0) = CT ∈ IRn×p. (5)

The solution to the regulator problem (A,B,C) is then given by

K = lim
t→−∞

K(t).

This approach replaces the need to find the (dense) n × n solution to the Riccati equation
by the integration of (m+p)n equations towards a steady state solution. While the reduced
storage costs of the Chandrasekhar equations make some large problems tractable that may



not be otherwise solvable, the slow convergence towards a steady state solution magnify
the computational costs associated with the integration.
As with the Lyapunov equation above, we have developed an algorithm that uses reduced-
order modeling ideas to dramatically reduce the integration time that is required for (4)-(5).
Consider the expression (from the derivation of the Chandrasekhar equations)

Π =
∫ 0

T
L(t)LT (t) dt+

∫ T

−∞
L(t)LT (t) dt︸ ︷︷ ︸

Πres

. (6)

The first term above is integrated using the Chandrasekhar equation, while we approximate
the second integral using a low-dimensional basis for L (over (−∞, T )). The expression
(6) above shows a clear connection between finding a good basis for L and a good basis for
Πres.

Algorithm 2 (Long-Time Integrator for (4)–(5)) Given A, B and C.

1. Integrate the Chandrasekhar equations until time T < 0.

2. Build a reduced-basis V for L(t), t < T .

3. Solve a reduced Riccati equation for P, set K̃res = R−1BTVPVT .

4. Use Kres = R−1BTΠres to compute K = K(T ) + Kres.

The accuracy of Algorithm 2 (relative error Erel for different integration times |T | and
different sizes of the reduced-order model (r) was performed. As we expect, Erel is re-
duced with longer integration time and larger model dimension. However, we observe
that longer integration times lead to smaller model dimension requirements to get “maxi-
mum” accuracy. This supports our rationale that components of higher frequency modes
are ultimately eliminated with integration. It is impressive that the relative error of 2.8%
obtained at T = −10 can be reduced 5 orders of magnitude with a 3 dimensional model.
Comparisons are provided in references #27 and 46.



Continuing Research

The co-PIs, Jeff Borggaard and Traian Iliescu along with John Paul Roop at North Car-
olina A& T are currently extending this research toward the rapid simulation of Boussinesq
equations. This includes application of the above techniques with the goal of improving the
design / control of thermal fluids in buildings as well as other applications in geophysical
fluids.

Natural extensions, such as Hermite interpolation of POD bases in parameter space,
incorporating other subgridscale and dynamic LES models, and their combination are cur-
rently underway. Continuation of the promising flow control approaches discovered in this
research are also planned.
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Leipzig, Germany, (June 2009).

10. SIAM Conference on Control and its Applications, Denver, CO, (July 2009).

11. American Control Conference, Baltimore, MD, (July 2010).

12. SIAM Annual Meeting, Pittsburgh, PA, (July 2010).

13. Clemson University, Mathematics Colloquium, Clemson, SC, (April 2008).

14. Florida State University, Department of Scientific Computing Colloquium, Tallahas-
see, FL, (October 2008).

15. Auburn University, Mathematics and Statistics Colloquium, Auburn, AL, (January
2009).

16. University of Pittsburgh, Mathematics Colloquium, Pittsburgh, PA, (February 2009).

17. Goethe Center for Scientific Computing, Goethe University Frankfurt am Main, Ger-
many, (June 2009).

18. Air Force Institute of Technology, Wright-Patterson Air Force Base, OH, (December
2010).

19. AFOSR Computational Mathematics Program Review, Arlington, VA, (August 2008).

20. 12th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference, Victo-
ria, British Columbia, Canada, (September 2008).

21. SIAM Conference on Applications of Dynamical Systems, Snowbird, UT, (May
2009).

22. The 2009 Joint ASCE-ASME-SES Conference on Mechanics and Materials,
Blacksburg, VA, (June 2009).



23. AFOSR Computational Mathematics Program Review, Arlington, VA, (July 2009).

24. 29th Annual Southeastern-Atlantic Regional Conference on Differential Equations,
Mercer, GA, (October 2009).

25. Emerging Topics in Dynamical Systems and Partial Differential Equations (DSPDEs’10),
Barcelona, Spain, (June 2010). (poster)

26. American Physical Society, 63rd Annual Meeting of the Division of Fluid Dynamics,
Long Beach, CA, (November 2010).

T. Iliescu

1. AMS Spring Central Meeting, Bloomington, IN (April 2008).

2. Mathematical Theory of Networks and Systems, Blacksburg, VA (July 2008).

3. Navier-Stokes Equations: Classical and Generalized Models, Centro di Ricerca Matem-
atica Ennio De Giorgi, Pisa, Italy (September 2008).

4. SIAM Conference on Computational Science & Engineering, Miami, Florida (March
2009).

5. AMS Spring Southeastern Section Meeting, Raleigh, NC (April 2009).

6. SIAM Conference on Mathematical and Computational Issues in the Geosciences,
Leipzig, Germany (June 2009).

7. The Joint ASCE-ASME-SES Conference on Mechanics and Materials, Blacksburg,
VA (June 2009).

8. SIAM Annual Meeting, Pittsburgh, PA (July 2010).

9. Florida State University, Department of Scientific Computing, Seminar, Tallahassee,
FL (November 2008).

10. Institute for Scientific Computing and Applied Mathematics, Indiana University,
(January 2009).

11. Instituto Superior Tecnico, Department of Mathematics, Lisbon, Portugal (May 2009).

12. Fall Fluids Mechanics Minisymposium at Virginia Tech (November 2008).

13. Fall Fluids Mechanics Minisymposium at Virginia Tech (November 2009).

14. Workshop on Model and Data Hierarchies for Simulating and Understanding Cli-
mate, IPAM, Los Angeles, CA, (March 2010).

15. Workshop on Transport and Mixing in Complex and Turbulent Flows, IMA, Min-
neapolis, MN, (April 2010).



16. AFOSR Computational Mathematics Program Review, Arlington, VA (July 2010).

V. Leite Nunes

1. 2011 SIAM Conference on Mathematical Geosciences, Long Beach, CA, (March
2011).

2. 2011 SIAM Student Conference, Clemson University (February 2011).

3. The 30th Southeastern-Atlantic Regional Conference on Differential Equations, Vir-
ginia Tech (October 2010).

4. 34th SIAM Southeastern-Atlantic Section Conference, North Carolina State Univer-
sity, (March 2010).

5. SIAM Student Conference 2010, Virginia Tech (February 2010).

6. The Clemson/Pitt/UTK/VT graduate/post graduate SIAM Student conference, Vir-
ginia Tech, Blacksburg, VA (February 2009).

H.-W. van Wyk

1. 35th SIAM Southeastern-Atlantic Section Conference, Charlotte, NC, (March 2011).

2. 2011 SIAM Student Conference, Clemson University (February 2011).

3. SIAM Student Conference 2010, Virginia Tech (February 2010).

4. The Clemson/Pitt/UTK/VT graduate/post graduate SIAM Student conference, Vir-
ginia Tech, Blacksburg, VA (February 2009).

Z. Wang

1. 2011 SIAM Computational Science and Engineering, Reno, NV (March 2011).

2. 2011 SIAM Student Conference, Clemson University (February 2011).

3. The 30th Southeastern-Atlantic Regional Conference on Differential Equations, Vir-
ginia Tech (October 2010).

4. Student Argonne Summer Symposium, Argonne National Laboratory (August 2010).

5. 2010 SIAM Annual Meeting (AN10), Pittsburgh, PA (July 2010).

6. 34th SIAM Southeastern-Atlantic Section Conference, North Carolina State Univer-
sity, (March 2010).

7. SIAM Student Conference 2010, Virginia Tech (February 2010).

8. The First VT Symposium on Reduced-Order Modeling and System Identification,
Virginia Tech (February 2010).



9. Fall Fluid Mechanics Symposium, Virginia Tech (November 2009).

10. SIAM Conference on Computational Science & Engineering (CSE09), Miami, FL
(March 2009).

11. The Clemson/Pitt/UTK/VT graduate/post graduate SIAM Student conference, Vir-
ginia Tech, Blacksburg, VA (February 2009).

12. Project/NExt/Young Mathematician’s Network Poster Session in AMS Joint Mathe-
matics Meeting, Washington, DC (January 2009).

Interactions and Transitions
Air Force Research Laboratory, Wright-Patterson Air Force Base, OH

Jeff Borggaard spent the summer of 2007 at AFRL/VACA working with Chris Camphouse
and James Myatt on a flow control problem. Efficient POD software using algorithms
developed in this research and applicable to practical engineering reduced-order model-
based control algorithms was provided to the AFRL researchers. Imran Akhtar visited
several AFRL researchers during a visit to Dayton in the spring of 2010. This included
several meetings with Phil Beran both in Dayton and when Dr. Beran visited Virginia
Tech.

A Ph.D. student at the Interdisciplinary Center for Applied Mathematics, Capt. Kevin
Pond, started working at AFIT in the fall of 2010. Jeff Borggaard visited AFIT and AFRL
in the fall of 2010, including a meeting with Jack Benek to foster collaborations.

Honors/Awards
Jeff Borggaard was awarded an ASEE Summer Faculty Fellowship and spent May-July
2007 at the AFRL Control Sciences Center of Excellence. This occurred just prior to this
grant period.


